SiQuENC: Newtonian dynamics for linear motion

Neatly and graphically represent **si**tuation(s)

Carefully read the problem three times. Draw object(s) and relevant aspects of environment. Identify requested unknowns.

Graphically represent <u>qu</u>antities and their relationships Free-body diagram

- **B** Use dashed **b**ubble to indicate object(s) in system.
- **E** Is the Earth nearby (right now)?
- T Is anything touching the system (right now)?
- **A** Draw axes (indicate +x and +y directions), with a positive direction matching direction of system's acceleration. If there is no direction of acceleration, orient axes to minimize the number of forces that fail to point along a drawn axis.

Identify relevant allowed starting point (in) equation(s) including Newton's laws (stated at bottom row)

	Force	F_{x}	$F_{\mathcal{Y}}$		
1					
2					
3					
4					
5					
6					
7	Σ	ma_x (is $a_x = 0$?)	ma_y (is $a_y = 0$?)		

Use <u>n</u>umbered steps to show REASoNing

Communicate

SiQuENC: Newtonian dynamics for linear motion

Example: Complete a force component chart for a block resting on a rough plane inclined at an angle of θ above the horizontal.

Neatly and graphically represent <u>si</u>tuation(s)

Carefully read the problem three times. Draw object(s) and relevant aspects of environment. Identify requested unknowns.

?: Force component chart

Graphically represent <u>qu</u>antities and their relationships Free-body diagram

- **B** Use dashed **b**ubble to indicate object(s) in system.
- E Is the Earth nearby (right now)?
- **T** Is anything **t**ouching the system (right now)?
- **A** Draw axes (indicate +x and +y directions), with a positive direction matching direction of system's acceleration. If there is no direction of acceleration, orient axes to minimize the number of forces that fail to point along a drawn axis.

Identify relevant allowed starting point (in) equations Including Newton's laws (stated at bottom row)

including Newton's laws (stated at bottom low)					
	Force	F_{x}	$F_{\mathcal{Y}}$		
1	$\vec{\mathbf{F}}_{G}$	$+F_{ m G}\sin heta$	$-F_{\mathrm{G}}\cos heta$		
2	$\vec{\mathbf{N}}$	0	+N		
3	$ec{\mathbf{f}}_{\mathrm{S}}$	$-f_{\mathrm{S}}$	0		
4					
5					
6					
7	Σ	ma_x (if $a_x = 0$?)	ma_y (if $a_y = 0$)		

Use <u>n</u>umbered steps to show REASoNing

Communicate